
FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

1 of 10 08/04/03 20:43

Executive Summary

In an effort to assess the progress Lunar Linux has made toward becoming a viable enterprise
platform, the Lunar team ran a number of benchmark tests to directly compare Lunar Linux to Red
Hat Linux.

Ultimately, the goal of these tests was to enable an accurate characterization of any operative
advantages Lunar might provide over other Linux distributions. The Lunar development group had
long perceived these advantages, but prior to this series of tests had no evidence beyond anecdotal
testimony from developers and users which indicated a distinct interactive speed enhancement when
using Lunar. The results strongly verified these initial observations. The advantages highlighted in
the testing are mainly due to Lunar’s distributed application management system (AMS provided by
Lunar’s core code) and the simplified customization routines it provides which enable user software
configuration and optimization.

The benchmarks used were selected to characterize web-service performance and local
computational tasks. They included comparisons of bash shell and perl performance, the Mysql
database and the apache web server. Perl is commonly used for system administration, webservices
and data-reduction tasks. Apache and Mysql are the most widely deployed web server/SQL database
(when used on Linux machines with PhP this is commonly called �LAMP�) combination and are both
noted for their speed and simplicity. The Bash shell is the default shell provided by both Lunar and
Red Hat Linux.

Lunar Linux aims to improve performance by simplifying and improving configuration and
dependency management. Lunar makes it easy for IT departments to keep their systems up to date,
and its local build routine allows applications to be optimized/customized for local hardware
configurations. When using Lunar, optimization of applications may be accomplished without
resorting to hand-building applications, and IT staff members can easily track and document that
work.

Lunar principally optimizes applications and libraries, taking a fairly conservative approach with the
Linux kernel and core libraries. Some performance benefits could also be realized here, however we
have found that the degree of return for the effort required to accomplish this is small, usually not
better than 2-5%, while we routinely accrue 20-50% (or better) performance gains through our
approach to building server applications that are locally tuned and optimized for their runtime
environment.

Test descriptions and results

Database and web server

Mysql random table inserts This benchmark is designed to test the
performance of reads and writes to the database as a table becomes fully
populated. Generally database writes take longer, however as the table
fills, the number of reads between writes increases.

Lunar Linux consistently runs this benchmark 100% faster than Mysql on RedHat.

Apache/php, using mysql cookie tracking This benchmark runs a
many-users performance test against a web page requiring a database
record insert for every page access.

Under moderate loads, Lunar and Redhat show nearly identical performance.
At high load levels, RedHat performance is approximately 14% higher--
however both the database and apache services repeatedly locked, requiring
reboot to correct and leaving corrupted filesystems. Lunar.....

Unixbench and lmbench Unixbench is an accepted benchmark used
for testing performance on Linux and Unix(tm) servers. UnixBench provides
information on application level performance. Lmbench tests low-level
performance of a wide variety of system characteristics and can be
useful in pinpointing the causes of higher level performance problems.

Lunar Linux averages 30% faster than RedHat Linux on Unixbench. Lunar
is also generally faster than RedHat in the lmbench. The differences appear
largely due to Redhat’s customization of it’s version of the Linux kernel
and glibc.

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

2 of 10 08/04/03 20:43

Perl Perl has been the lingua-franca of CGI from the beginning of the widespread
use of the Internet, It has also been the most widely used tool for system
administration and data manipulation.

Perl performance is compared using the perlbench benchmark in addition
to two routines which I have used for evaluating perl performance for a
decade.

Using the perlbench routine, Lunar Linux’s perl build performs at about
25% faster than perl on Redhat Linux. A larger performance is found in
the data reduction and fibonacci tests, both of which run 30% faster
on Lunar.

Benchmark details

System specs

CPU: dual P3/866 / 256kb cache Model, IBM netfinity 5100 server
HDD: SCSI adaptec aic7x 160mb/s w/ 1 18G hotswap disks fully allocated per OS
RAM: 256 mb / swap never activated during benchmarks
Lunar optimization:
-O3 -mcpu=pentium3 -march=pentium3 -mmmx -msse -mfpmath=sse,387Note

Unixbench results

Unixbench is a well known benchmark suite used to compare filesystem, scripting and process
overheads. In this table, larger numbers indicate better performance.

Table: UnixBench microbenchmarks. File copy throughput is in megabytes per second. The other UnixBench
microbenchmarks are in microseconds per loop iteration (or milliseconds for the shell scripts benchmark).

Microbenchmark Lunar RedHat Difference

file copy 4KB 280.7 228.6 23%

file copy 1KB 301.7 173.7 74%

file copy 256B 322.5 144.7 122%

pipe 279.1 297.3 -6%%

pipe switching 279 n/a n/a

process creation 318.8 409.5 -22%

execl 396.0 369.4 7%

shell scripts (8) 650.0 135.0 381%

Lmbench results

Lmbench measures low-level kernel and glibc performance. It is an important tool for understanding
system-limited performance when application-level tuning avenues have been exhausted. In this table,
smaller numbers indicate better performance.

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

3 of 10 08/04/03 20:43

Table: lmbench microbenchmarks. Measurements are in microseconds. Measurements below the bar represent
round-trip latency for various forms of IPC.

Microbenchmark Lunar RedHat Difference

null I/O 0.73 0.71 -3%

stat 2.5 4.7 85%

open/close 3.8 6.1 60%

0KB create 40.1 63.9 59%

0KB delete 8.4 21 150%

fork 303 292 -3%

execve 1002 1050 5%

sh 4971 4131 -17%

pipe 8.8 7.2 -18%

AF_UNIX 27.2 11.4 -58%

TCP 60 35.1 -41%

TCP connect 143 78 -45%

See appendix for Unixbench and Lmbench detail data

Apache web server and Mysql database

In their default configurations, Apache2 and Mysql on Lunar served pages 8% faster than RedHat after
accounting for wrong pages transmitted under RedHat due to database connection failures. We found that
on average 15% of pages were corrupted due to these errors.

We were able to fix this bottleneck in RedHat by increasing the connection-limit, this however resulted in
severe server instability. The mysql database would begin to encounter errors after just 2 passes (15
minutes) of the stress-test and after 2 hours, the apache process stopped responding to queries. Neither
service could be stopped by the standard control scripts, and after killing the mysql service (mysqld), the
host filesystem was left with unremovable data, filling 500mb of space due to open filehandles.

The nominally faster RedHat performance is predicted by the low-level lmbench benchmark results. We
assume that RedHat has put considerable work into optimizing Glibc and the linux kernel, particularly in
the area of the network code layer. We also know that RedHat has backported NPTL multi-thread code
changes from the 2.5 development kernel branch. It seems that these optimizations have introduced some
stability problems.

Perl

Perlbench

In the perlbench benchmark test the optimized version of perl proved to be on average 25% faster than the
perl interpreter in included with RedHat Linux. Lunar’s Perl was consistantly faster than RedHat’s, and
individual tests showed Lunar giving performance enhancements ranging from 10-47%.

See appendix for raw Perlbench report data

Additional Benchmarks

In addition to this, we performed two pure cpu benchmarks, one a fibonacci caclulator, the other an
edge-case, in calculating a moving average from a random data file. This was posted to comp.lang.perl in
’94.

See: ’94 results for various architectures

Fibonacci - simply calculates any fibonacci number, where the fibonacci sequence is defined as ... N +
(N-1) + (N-2) ...

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

4 of 10 08/04/03 20:43

The recursive fibonacci algorithm is a handy benchmark simply because it generates a very large number of
subroutine calls for relatively small values of N.

Data Reduction This script benchmarks the time to calculate a 60-value moving average on a data set,
generating a new data set approximately 10x smaller. This is a handy pre-processor for time-series data, but
has it’s own computational cost.

Fibonacci results:

 n: 28 32 32(opt’n by Larry Wall)
redhat perl: 3.6s 25.1s 17.1
lunar perl: 2.7s 19.3s 13.3
 difference: 0.75 0.77 0.77

Moving avg calc results:

redhat perl: 17.0s
lunar perl: 12.4s
 difference: 0.73

Comments

These simple perl benchmarks are cpu-bound, the data-reduction script requires perl to fit into system cache
and buffers 60 lines of input data to do processing.

Mysql - a perl script inserting random rows into a table

Forrest D. Whitcher, the developer who ran this benchmark test, wrote the following script in 1993 in
oraperl to bench inserts into an Oracle DB.

The plots are elapsed seconds between 100k iterations through the loop. It takes about 2.1 million queries to
90% populate the table.

All the plots but the last two represent one client and server running on one system. Protocol latency seems
to predominate and the perl benchmark running concurrent on the server machine will use slightly more
CPU than the mysqldb process.

For this reason, after running the script locally on both Redhat and Lunar we ran the client side script on
another 2xSMP linux system (with a slightly faster perl compiled with the Intel(r) C compiler). With this
approach we were able to load the database engine to utilize 70-100% of the CPU.

Summary results

Time to insert 900k records into db best (worst) time

 bench: 1 client 4 clients 6 clients
--
redhat: 42/(51)m 31m n/a
 lunar: 24(28)m 15m 10(12)m

inserts/sec
redhat: 357(294) 483 n/a
 lunar: 625(535) 1000 1500(1250)

queries/sec
redhat: 833(686) 1129 n/a
 lunar: 1458(1250) 2333 3500(2916)

Comments

Interactive performance on RedHat suffered substantially, whether using the stock kernel or a vanilla
linus-tree kernel when the mysql daemon was busy at more than 25% of cpu. For example:

time uname -a
Linux w2 2.4.20 #2 SMP Sat May 31 19:40:03 EDT 2003 i686 i686 i386 GNU/Linux
real 0m2.178s
user 0m0.000s
sys 0m0.000s

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

5 of 10 08/04/03 20:43

Interactive performance on Lunar (linus-tree kernel), on the other hand, remained instantaneous at all times
even when running against 6 remote clients with both CPU’s runnning at 100% utilization.

Graph: time per 100,000 db queries during bench run

Code

perl fibonacci
#!/usr/bin/perl
$n = @ARGV[0];
$f=&fib($n);
print "$nth fib = $f\n";
sub fib {
 local ($n)=$_[0];
 if ($n==0) {return (0);}
 elsif($n==1) {return(1);}
 return (&fib ($n-1) + &fib($n-2));
}

Larry Wall’s optimized fibonacci
sub fib { $_[0] == 0 ? 0 : $_[0] == 1 ? 1 : &fib($_[0]-1) + &fib($_[0]-2) }

perl moving averages on random data
bnchtest.sh
#!/bin/sh
uname -a > result.dat
date >> result.dat
perl mkdata.pl 100000 > 100k.dat 2>> result.dat
perl movavg.pl 100k.dat > /dev/null 2>> result.dat
perl movavg.pl 100k.dat > /dev/null 2>> result.dat
perl movavg.pl 100k.dat > /dev/null 2>> result.dat
date >> result.dat
rm -f 100k.dat

mkdata.pl
#!/usr/local/bin/perl
($utime, $stime, $cutime, $cstime) = times();
print (STDERR "compile: user = $utime, system = $stime\n");
$ndata = $ARGV[0];

for ($i=0; $i<=$ndata; ++$i){
 $r1 = rand();
 $r2 = rand();

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

6 of 10 08/04/03 20:43

 printf "%d %f %f\n", $i, $r1, $r2;
 }
($utime, $stime, $cutime, $cstime) = times();
print (STDERR "run: user = $utime, system = $stime\n");

movavg.pl
#!/usr/local/bin/perl
$sumi=$sumo=$avgi=$avgo=0;
($utime, $stime, $cutime, $cstime) = times();
print (STDERR "compile: user = $utime, system = $stime\n");

while (<>)
 {

 ($hr, $inp, $outp) = split(’ ’,$_, 999);
 if($. <= 60)
 {
printf "%f, %f, %f\n", $hr, $inp, $outp ;
 unshift (@imv_avg, $inp);
 unshift (@omv_avg, $outp);
 }
 else
 {
 $nil = pop (@imv_avg);
 $nil = pop (@omv_avg);
 unshift (@imv_avg, scalar($inp));
 unshift (@omv_avg, scalar($outp));

 if (($. / 10) == int($. / 10))

 {
 $sumi = $sumo =0;
 for ($i=1;$i < 21;$i++)
 {
 $sumi += scalar ($imv_avg[$i] * (20/$i));
 $sumo += scalar ($omv_avg[$i] * (20/$i));
printf "%d", $i;
 }
 $avgi = $sumi / 60;
 $avgo = $sumo / 60;
 printf "%f %f %f\n", $hr, $avgi, $avgo;
 }
 }
}
($utime, $stime, $cutime, $cstime) = times();
print (STDERR "run: user = $utime, system = $stime\n");

!

mysql insertion bench
#!/usr/bin/perl -w

require "ctime.pl";
use DBI;

#use strict;
use vars qw($dbh $hostname $opt_user $opt_password $opt_help $opt_host
 $opt_socket $opt_port $host $version);

$dbh=$host=$opt_user= $opt_password= $opt_help= $opt_host= $opt_socket= "";
$opt_port=0;
if ($opt_host eq ’’)
{
 $hostname = "w2";
}
else
{
 $hostname = $opt_host;
}
$opt_user=’bench’;
ask for a password if no password is set already
if ($opt_password eq ’’)
{
 system "stty -echo";
 print "Password for user $opt_user to connect to MySQL: ";
 $opt_password = <STDIN>;
 chomp($opt_password);
 system "stty echo";
 print "\n";
}
srand (time());

make the connection to MySQL
$dbh= DBI->connect("DBI:mysql:testdb:host=$hostname:port=$opt_port:mysql_socket=$
opt_socket",$opt_user,$opt_password, {PrintError => 0}) ||

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

7 of 10 08/04/03 20:43

 die("Can’t make a connection to the mysql server.\n The error: $DBI::errstr");

my $rowdata="Just another row in the table";
$count = 0;
while (1){
 my $r_num = int(rand((1024*1024)));
 my $select = $dbh->prepare ("
 SELECT rindex, time, rdate
 FROM random
 WHERE rindex = $r_num
 ");
 $select->execute();
 my @row = $select->fetchrow_array();
 if (undef ($row[1])) {
 $nohit = 0;
 }
 else {
 $nohit = 1;
 }
 #print "@row\n";
 if ($nohit >= 0) {
 $now = time();
 $count++;
 my $insert = $dbh->do ("INSERT INTO random set rindex=$r_num,time=$now, rdata=\"$rowdata\"");
 if ($count %100000 == 0) {
 $dattime = &ctime($now);
 print "inserting $count $now ,$dattime record\n";}
 }
 else {
 print ("collided at $r_num $row[1]\n");
 }
}
$dbh->disconnect;

Authors: Forrest D. Whitcher, Charles S. Mead, Editor: Suzanne Burns

Copyright © 2003 FW Systems LLC, Lunar Linux.org All Rights Reserved

Notes:

data-reduction perl bench 1994 (25k datafiles)

 Results
 sec cpu sys cpu
cpu/real Arch. Mfgr Clock Notes
__

 23/25 (2)R4400 SGI 150/75
 24/44 ALpha DEC ?
 25/28 PA-RISC HP 66
 29/30 Power2 IBM 66 (128 bit memory width)
 34/36 (2)R4400 SGI 100/50
 70/72 i486 ? 66 (cache=256-Interactive)
 70/72 (2)MC88100 DGen ?
 70/78 SPARC10 SUN ?
 78/86 i486 ? 50 (linux)
 82/83 (2)R3000 SGI 40 (cache=256k/1MB)
 87/240 (6)SPARC Solbourne 33 (120 users, heavily loaded)
 98/102 MC88100 modcomp ?
 156/169 SPARC2 SUN 33
 160/183 POWER IBM(320) 22 {64 bit memory width)
 na/175 i486 HP 33 (no cache-os/2)
 184/187 PA-RISC HP(847) ?
 223/246 MC68040 HP ?
 290/340 MC68030 HP ?
 344/360 i386 ? 25 (Interactive)
 na/375 i386 IBM 25 (cache=128-os/2)
 464/540 SPARC1 SUN ?
1100/1200 i386 ? 40 (noFP)

perl "hints/linux.sh" edited to compile perl with these optimizations

Appendix, Raw benchmark report results

lmbench 3.0 data

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

8 of 10 08/04/03 20:43

Summary of lmbench results

commband_c (bigger is better)
Lunar 559 901 37 430 556 240 176 555 213
RedHat 680 354 168 443 555 238 175 555 213.5

 Host OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem
 UNIX reread reread (libc) (hand) read write
 --------- ------------- ---- ---- ---- ------ ------ ------ ------ ---- -----
 1.2158 3.9005 4.4596 1.0296 0.9990 0.9929 0.9956 0.9991 1.0007

commlatent_c (smaller is better)
Lunar 2.2 8.8 27.2 60.0 143
RedHat 1.1 7.2 11.4 35.1 78

 Host OS 2p/0K Pipe AF TCP TCP
 ctxsw UNIX conn
 --------- ------------- ----- ----- ---- ----- ----- ----- ----- ----
 0.5147 0.8201 0.4203 0.5854 0.5461

cswitch_c (smaller is better)
Lunar 2.2 4.4 34.33 14.7 94 28.8 95
RedHat 1.1 3.4 2.55 6.38 97 25.6 97.5

 Host OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
 ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw
 --------- ------------- ------ ------ ------ ------ ------ ------- -------
 0.5147 0.7818 0.0745 0.4323 1.0351 0.8908 1.0248

processor_c (smaller is better)
Lunar 864 0.40 0.73 2.5 3.8 30.9 1.0 3.4 303 1002 4971
RedHat 864 0.43 0.71 4.7 6.1 28.3 1.1 3.2 292 1050 4131
--
 Host OS Mhz null null open slct sig sig fork exec sh
 call I/O stat clos TCP inst hndl proc proc proc
 --------- ------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 1.0000 1.0795 0.9677 1.8585 1.6064 0.9154 1.0583 0.9363 0.9659 1.0481 0.8311

vmlatent_c (smaller is better)
Lunar 40.1 8.4 119 35 527 0.86 1.8 22.4
RedHat 63.9 21 183 44 864 0.45 2.7 20.3

 Host OS 0K File 10K File Mmap Prot Page 100fd
 Create Delete Create Delete Latency Fault Fault selct
 --------- ------------- ------ ------ ------ ------ ------- ----- ------- -----
 1.5915 2.5432 1.5310 1.2563 1.6401 0.5298 1.5069 0.9056

Lunar Linux shows subtantially slower performance than Redhat Linux in some of the network and
context-switching latency tests, probably due to kernel/glibc tuning by RedHat. however Lunar offers
substantially better performance in an array of other measurements, notably in the VM and filesystem
operations are significantly faster when running Lunar.

Lunar Linux Unixbench results

 BYTE UNIX Benchmarks (Version 4.1.0)
 System -- Linux w2 2.4.20 #1 SMP Sun Jun 1 13:31:40 EDT 2003 i686 unknown unknown GNU/Linux
 Start Benchmark Run: Tue Jun 10 13:36:07 EDT 2003
 10 interactive users.
 13:36:07 up 33 min, 10 users, load average: 0.15, 1.28, 3.68
 lrwxrwxrwx 1 root root 4 May 29 13:41 /bin/sh -> bash
 /bin/sh: symbolic link to ‘bash’
 /dev/sdd2 482249 325458 131891 72% /
Dhrystone 2 using register variables 1919747.4 lps (10.0 secs, 10 samples)
Double-Precision Whetstone 504.2 MWIPS (10.0 secs, 10 samples)
System Call Overhead 405435.7 lps (10.0 secs, 10 samples)
Pipe Throughput 370154.5 lps (10.0 secs, 10 samples)
Pipe-based Context Switching 111631.5 lps (10.0 secs, 10 samples)
Process Creation 4017.4 lps (30.0 secs, 3 samples)
Execl Throughput 1702.7 lps (29.8 secs, 3 samples)
File Read 1024 bufsize 2000 maxblocks 318357.0 KBps (30.0 secs, 3 samples)
File Write 1024 bufsize 2000 maxblocks 221466.0 KBps (30.0 secs, 3 samples)
File Copy 1024 bufsize 2000 maxblocks 119486.0 KBps (30.0 secs, 3 samples)
File Read 256 bufsize 500 maxblocks 126660.0 KBps (30.0 secs, 3 samples)
File Write 256 bufsize 500 maxblocks 100533.0 KBps (30.0 secs, 3 samples)
File Copy 256 bufsize 500 maxblocks 53369.0 KBps (30.0 secs, 3 samples)
File Read 4096 bufsize 8000 maxblocks 507736.0 KBps (30.0 secs, 3 samples)
File Write 4096 bufsize 8000 maxblocks 277066.0 KBps (30.0 secs, 3 samples)
File Copy 4096 bufsize 8000 maxblocks 162786.0 KBps (30.0 secs, 3 samples)
Shell Scripts (1 concurrent) 1949.7 lpm (60.0 secs, 3 samples)
Shell Scripts (8 concurrent) 390.0 lpm (60.0 secs, 3 samples)
Shell Scripts (16 concurrent) 199.0 lpm (60.0 secs, 3 samples)
Arithmetic Test (type = short) 214153.4 lps (10.0 secs, 3 samples)
Arithmetic Test (type = int) 217260.6 lps (10.0 secs, 3 samples)
Arithmetic Test (type = long) 217277.3 lps (10.0 secs, 3 samples)

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

9 of 10 08/04/03 20:43

Arithmetic Test (type = float) 229278.5 lps (10.0 secs, 3 samples)
Arithmetic Test (type = double) 229267.4 lps (10.0 secs, 3 samples)
Arithoh 3999483.8 lps (10.0 secs, 3 samples)
C Compiler Throughput 485.0 lpm (60.0 secs, 3 samples)
Dc: sqrt(2) to 99 decimal places 54762.0 lpm (30.0 secs, 3 samples)
Recursion Test--Tower of Hanoi 31214.4 lps (20.0 secs, 3 samples)

 INDEX VALUES
TEST BASELINE RESULT INDEX

Dhrystone 2 using register variables 116700.0 1919747.4 164.5
Double-Precision Whetstone 55.0 504.2 91.7
Execl Throughput 43.0 1702.7 396.0
File Copy 1024 bufsize 2000 maxblocks 3960.0 119486.0 301.7
File Copy 256 bufsize 500 maxblocks 1655.0 53369.0 322.5
File Copy 4096 bufsize 8000 maxblocks 5800.0 162786.0 280.7
Pipe Throughput 12440.0 370154.5 297.6
Pipe-based Context Switching 4000.0 111631.5 279.1
Process Creation 126.0 4017.4 318.8
Shell Scripts (8 concurrent) 6.0 390.0 650.0
System Call Overhead 15000.0 405435.7 270.3
 =========
 FINAL SCORE 277.7

Redhat 9 Unixbench results

 BYTE UNIX Benchmarks (Version 4.1.0)
 System -- Linux w2 2.4.20-8smp #1 SMP Thu Mar 13 17:45:54 EST 2003 i686 i686 i386 GNU/Linux
 Start Benchmark Run: Tue Jun 10 11:59:54 EDT 2003
 4 interactive users.
 11:59:54 up 1:54, 4 users, load average: 0.15, 0.04, 0.27
 lrwxrwxrwx 1 root root 4 May 21 16:02 /bin/sh -> bash
 /bin/sh: symbolic link to bash
 /dev/sda10 4127076 468504 3448928 12% /home
Dhrystone 2 using register variables 1831148.3 lps (10.0 secs, 10 samples)
Double-Precision Whetstone 482.8 MWIPS (10.0 secs, 10 samples)
System Call Overhead 391557.0 lps (10.0 secs, 10 samples)
Pipe Throughput 369903.0 lps (10.0 secs, 10 samples)
Pipe-based Context Switching 142648.5 lps (10.0 secs, 10 samples)
Process Creation 5159.6 lps (30.0 secs, 3 samples)
Execl Throughput 1588.4 lps (29.8 secs, 3 samples)
File Read 1024 bufsize 2000 maxblocks 313947.0 KBps (30.0 secs, 3 samples)
File Write 1024 bufsize 2000 maxblocks 98309.0 KBps (30.0 secs, 3 samples)
File Copy 1024 bufsize 2000 maxblocks 68801.0 KBps (30.0 secs, 3 samples)
File Read 256 bufsize 500 maxblocks 126649.0 KBps (30.0 secs, 3 samples)
File Write 256 bufsize 500 maxblocks 31522.0 KBps (30.0 secs, 3 samples)
File Copy 256 bufsize 500 maxblocks 23949.0 KBps (30.0 secs, 3 samples)
File Read 4096 bufsize 8000 maxblocks 497549.0 KBps (30.0 secs, 3 samples)
File Write 4096 bufsize 8000 maxblocks 204977.0 KBps (30.0 secs, 3 samples)
File Copy 4096 bufsize 8000 maxblocks 132571.0 KBps (30.0 secs, 3 samples)
Shell Scripts (1 concurrent) 345.3 lpm (60.0 secs, 3 samples)
Shell Scripts (8 concurrent) 81.0 lpm (60.0 secs, 3 samples)
Shell Scripts (16 concurrent) 41.0 lpm (60.0 secs, 3 samples)
Arithmetic Test (type = short) 218855.6 lps (10.0 secs, 3 samples)
Arithmetic Test (type = int) 225708.2 lps (10.0 secs, 3 samples)
Arithmetic Test (type = long) 225826.3 lps (10.0 secs, 3 samples)
Arithmetic Test (type = float) 228865.5 lps (10.0 secs, 3 samples)
Arithmetic Test (type = double) 228978.5 lps (10.0 secs, 3 samples)
Arithoh 4015630.2 lps (10.0 secs, 3 samples)
C Compiler Throughput 443.0 lpm (60.0 secs, 3 samples)
Dc: sqrt(2) to 99 decimal places 56781.9 lpm (30.0 secs, 3 samples)
Recursion Test--Tower of Hanoi 32163.7 lps (20.0 secs, 3 samples)

 INDEX VALUES
TEST BASELINE RESULT INDEX

Dhrystone 2 using register variables 116700.0 1831148.3 156.9
Double-Precision Whetstone 55.0 482.8 87.8
Execl Throughput 43.0 1588.4 369.4
File Copy 1024 bufsize 2000 maxblocks 3960.0 68801.0 173.7
File Copy 256 bufsize 500 maxblocks 1655.0 23949.0 144.7
File Copy 4096 bufsize 8000 maxblocks 5800.0 132571.0 228.6
Pipe Throughput 12440.0 369903.0 297.3

Note: redhat did not complete the Pipe-based
Context Switching test

Process Creation 126.0 5159.6 409.5
Shell Scripts (8 concurrent) 6.0 81.0 135.0
System Call Overhead 15000.0 391557.0 261.0
 =========
 FINAL SCORE 204.1

FW Systems -- Benchmark results Lunar 1.3.1 vs redhat 9.0(shrike) file:///home/fw/bench_report_r2.html

10 of 10 08/04/03 20:43

Perlbench results

Lunar) perl-5.008
 path = /usr/bin/perl
 cc = cc
 optimize = -O3 -mcpu=pentium3 -march=pentium3 -mmmx -msse \
 -mfpmath=sse,387
 ccflags = -D_REENTRANT -D_GNU_SOURCE -fno-strict-aliasing \
 -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
 usemymalloc = n

Redhat) perl-5.008
 path = /mnt/d1/usr/bin/perl
 cc = gcc
 optimize = -O2 -march=i386 -mcpu=i686 -g
 ccflags = -D_REENTRANT -D_GNU_SOURCE -DTHREADS_HAVE_PIDS \
 -DDEBUGGING -fno-strict-aliasing -I/usr/local/include \
 -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -I/usr/include/gdbm
 usemymalloc = n

 Lunar Redhat
 ---- ----
arith/mixed 100 79
arith/trig 100 81
array/copy 100 79
array/foreach 100 77
array/index 100 88
array/pop 100 77
array/shift 100 79
array/sort-num 100 83
array/sort 100 89
call/0arg 100 74
call/1arg 100 76
call/2arg 100 79
call/9arg 100 76
call/empty 100 68
call/fib 100 75
call/method 100 74
call/wantarray 100 74
hash/copy 100 82
hash/each 100 78
hash/foreach-sort 100 91
hash/foreach 100 84
hash/get 100 90
hash/set 100 87
loop/for-c 100 87
loop/for-range-const 100 86
loop/for-range 100 88
loop/getline 100 73
loop/while-my 100 75
loop/while 100 83
re/const 100 69
re/w 100 88
startup/fewmod 100 81
startup/lotsofsub 100 83
startup/noprog 100 74
string/base64 100 74
string/htmlparser 100 76
string/index-const 100 77
string/index-var 100 78
string/ipol 100 87
string/tr 100 92

AVERAGE 100 80

